top of page

Background

Wissenswertes und Hintergründe über hörbare Digitalisierung und Code-basiertes Sound Branding.

Autor Stephan Vincent Nölke

Edition comevis

"Tone of Voice - Wenn Stimme zur Marke wird", das seit 2012 auf dem Markt ist, greift das Thema Corporate Voice und Voice Branding auf. In diesem Buch geht es um die auditiv definierte Corporate Language. Es ist sicher nicht nur für Funktionsinhaber in Unternehmen oder Studierende spannend, sondern eröffnet auch neue Einblicke für jedermann - denn Sprache ist auch Karrierefaktor.

Tone of Voice comevis Stephan Nölke

ISBN: 978-3-00-036757-1

Preis: 24,95 € inkl. MwSt.

Wissenswertes & Grundlegendes über Akustik und unser Gehör

Kapitel 1
Was ist Luftschall?

Grundlegend versetzt schwingende (also sich um einen Ruhepunkt wiederholt bewegende) Materie ihr Umgebungsmedium (z.B. Luft) in Bewegung. Das kann beispielsweise durch eine angeschlagene Gitarrensaite, die menschlichen Stimmbänder oder auch eine Lautsprechermembran geschehen. Für die Schwingung, also die Auslenkung aus der Ruhelage, und damit die Schallerzeugung muss Energie aufgewendet werden. Wenn sich die Schwingungen über das Umgebungsmedium bis zu unserem Trommelfell ausbreiten und dieses ebenfalls in Schwingung versetzt, wird Schall für uns hörbar. Ein Hören im Vakuum, also in einem Raum, in dem es kein Umgebungsmedium gibt, ist daher nicht möglich.

Eine sich ausbreitende Schwingung kommt dadurch zustande, dass ein Materien-Teilchen (z.B. ein Luftmolekül) ein benachbartes in Schwingung versetzt. Obwohl diese Bewegung eines einzelnen Moleküls nur minimal ist, ergibt sich eine sehr schnelle Bewegungsfortpflanzung der Schwingung und man spricht von einer (Schall-)Welle. Die Schallgeschwindigkeit, also die Ausbreitungsgeschwindigkeit, beträgt in der Luft 344 m/s.

Bei Wellen unterscheidet man zwischen Longitudinal- und Transversalwellen. Während Longitudinalwellen (Längswellen) in ihrer Ausbreitungsrichtung schwingen (z.B. Luftschall), schwingen Transversalwellen (Querwellen) senkrecht zu ihrer Ausbreitungsrichtung, wie z.B. beim Schwingen eines Seils. In Flüssigkeiten und Gasen breitet sich Schall lediglich in Form von Longitudinalwellen aus. In Festkörpern kann sich Schall in Form von Longitudinalwellen und Transversalwellen ausbreiten. Wenn man sich den akustischen Prozess einer Gitarre genauer anschaut, wird klar, wie sich die für die Übertragung von Luftschall relevanten Longitudinalwellen im Raum verhalten: Wird eine Saite angeschlagen, versetzt der schwingende Körper die ihn umgebenden Luftmoleküle in Bewegung. Diese setzen wiederum ihre benachbarten Moleküle in Bewegung und es kommt zu Luftmolekülverdichtungen (Überdruck) sowie -verdünnungen (Unterdruck). Schall ist also nichts anderes als eine sich ausbreitende, dem atmosphärischen Luftdruck überlagerte Druckschwankung, oder in anderen Worten eine mechanische, sich im elastischen Medium ausbreitende Schwingung (Auslenkung aus der Ruhelage).

wellen.png

Verschiedene Schallparameter lösen beim Menschen spezifische Empfindungen aus. Die Amplitude ist verantwortlich für die wahrgenommene Lautstärke des Schallereignisses. Die Frequenz gibt die Höhe eines Tons wieder. Der Mensch kann etwa einen Bereich zwischen 20 Hz und 20000 Hz hören. Die Frequenzspektrum definiert die Klangfarbe, denn jedes Schallereignis ist eine Überlagerung vieler Sinusschwingungen unterschiedlicher Frequenz, Phase und Amplitude. Mehr dazu in Kapitel 2.

Kapitel 2
Überlagerung von Schwingungen

Überlagern sich mehrere Schwingungen, so kann es zu akustischen Phänomenen kommen, z.B. zur Interferenz oder Schwebung.

Interferenzen

Interferenzentreten bei der Überlagerung von Schwingungen gleicher Frequenz auf. Hierbei kommt es auf die Phasenlage der beiden Signale an, sodass zwischen der konstruktiven und der destruktiven Interferenz zu unterscheiden ist: Die konstruktive Interferenz ergibt sich dann, wenn sich zwei Signale von gleicher Frequenz phasengleich überlagern. Man spricht dann auch von einem Phasenunterschied von 0 Grad. Weil sich bei einer Überlagerung von zwei Signalen die Auslenkungswerte addieren, kommt es bei der Phasengleichheit von zwei Signalen gleicher Amplitude zu einer Welle mit verdoppelter Schalldruckamplitude. Bei der Überlagerung zweier gegenphasiger Wellen (Phasenunterschied 180 Grad) kommt es bei gleicher Frequenz und Amplitude zur vollständigen Auslöschung des Signals, sodass man in diesem Fall von einer destruktiven Interferenz spricht.

interferenzen.png

Schwebungen

 

Schwebungen treten in Erscheinung, wenn sich mehrere Schallereignisse nur minimal in ihrer Frequenz unterscheiden. Dadurch verschieben sich die Wellen kontinuierlich zueinander und es kommt zu einem periodischen Wechsel zwischen konstruktiver und destruktiver Interferenz. Es gibt also Momente, in denen sich die Signale „in Phase“ verstärken oder „gegenphasig“ auslöschen. Wir nehmen dies als Lautstärkenschwankung wahr. Wenn sich also ein 400Hz-Signal und ein 405Hz-Signal überlagern, beträgt die Schwebungsfrequenz 5 Hz.

Schwebung.png

Eine praktische Anwendung findet die Schwebung beim Stimmen einer Gitarre. Hier kann man die Stimmung der Saiten vergleichen: Wenn man beide Saiten im verstimmten Zustand anschlägt ist die Schwebungsfrequenz hoch, man hört eine schnelle Lautstärkenschwankung. Je näher sich beim Stimmen der Saiten deren Stimmungen angleichen, desto langsamer werden die Schwankungen, da die Schwebungsfrequenz abnimmt.

Komplexe Schwingungen

 

Komplexe Schwingungen entstehen durch die Überlagerung von Wellen unterschiedlicher Frequenz, die somit keinen Phasenbezug zueinander aufweisen und als inkoheränt oder nicht-korrelierend bezeichnet werden (anders als Interferenzen und Schwebungen, die Wellen betreffen, die einen konkreten Phasenbezug zueinander haben). Bei Addierung der einzelnen Auslenkungen kommt es nicht zu Interferenzen, sondern zu einer komplexen Wellenform. Weil jedes Schallereignis eine Überlagerung vieler Sinusschwingungen unterschiedlicher Frequenz, Phase und Amplitude ist, kann eine Schwingung in ihre einzelnen Sinusschwingungen zerlegt werden. Dies geschieht mit der diskreten Fourier-Transformation, die als Ergebnis Aufschluss über das Frequenzspektrum und damit über die Klangfarbe gibt. Als einfache Beispiele lassen sich hier schrille oder scharfe Klangfarben nennen, die also viele hohe Frequenzen aufweisen, oder eine dumpfe Klangfarbe, die auf wenige hohe Frequenzen hinweist.

 

Unterschied zwischen Tonhöhe und Klangfarbe

Nicht nur bei einer Sinusschwingung, sondern auch bei einer sich wiederholenden, also periodisch auftretenden komplexen Schwingung gibt die Periodendauer die Zeit an, die die Schwingung benötigt, bevor sie sich wiederholt, und der Kehrwert daraus ist die als Tonhöhe wahrgenommene Grundfrequenz der komplexen Schwingung. Die anderen Einzelfrequenzen bilden die Obertöne, die die Klangfarbe bestimmen. Bei einer nicht-periodischen Schwingung mit einer sehr unregelmäßigen Wellenform (z.B. ein Beckenschlag) kann es also vorkommen, dass keine Tonhöhe wahrnehmbar, sondern nur die durch die Oberfrequenzen entstehende Klangfarbe definierbar ist.

 

Unterschied zwischen Klang und Geräusch